Learn R Programming

GISTools (version 0.7-4)

Computational Inference from Point Data: Bootstrap and Kernel Bootstrap from Points

Description

Operations for bootstrapping and kernel bootstrapping based on point data. bstrap.points sample n points with replacement from a sample - and jitter.points adds a Gaussian displacement to each point in a data set. Applying a jitter to a bootstrap effectively creates a kernel bootstrap operation.

Usage

jitter.points(pts,scl) bstrap.points(pts)

Arguments

pts
A SpatialPointsDataFrame
scl
A scale parameter - basically the standard deviation of the random Gaussian displacement

Value

A SpatialPointsDataFrame - with either a sample without replacement or a replica of the input data with displacements.

Examples

Run this code
data(newhaven)
plot(blocks)
for (i in 1:20) plot(jitter.points(breach,150),add=TRUE,pch=1,col='red') 

Run the code above in your browser using DataLab